Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigation of structural and optoelectronic properties of annealed nickel phthalocyanine thin films

Identifieur interne : 000084 ( Main/Repository ); précédent : 000083; suivant : 000085

Investigation of structural and optoelectronic properties of annealed nickel phthalocyanine thin films

Auteurs : RBID : Pascal:14-0035839

Descripteurs français

English descriptors

Abstract

Thin films of nickel phthalocyanine (NiPc) were prepared by thermal evaporation and the effects of annealing temperature on the structural and optical properties of the samples were studied using different analytical methods. Structural analysis showed that the grain size and crystallinity of NiPc films improved as annealing temperature increased from 25 to 150 °C. Also, maximum grain size (71.3 nm) was obtained at 150 °C annealing temperature. In addition, NiPc films annealed at 150 °C had a very smooth surface with an RMS roughness of 0.41 nm. Optical analysis indicated that band gap energy of films at different annealing temperatures varied in the range of 3.22-3.28 eV. Schottky diode solar cells with a structure of ITO/PEDOT:PSS/NiPc/Al were fabricated. Measurement of the dark current density-voltage (J-V) characteristics of diodes showed that the current density of films annealed at 150 °C for a given bias was greater than that of other films. Furthermore, the films revealed the highest rectification ratio (23.1) and lowest barrier height (0.84 eV) demonstrating, respectively, 23% and 11% increase compared with those of the deposited NiPc films. Meanwhile, photoconversion behavior of films annealed at 150 °C under illumination showed the highest short circuit current density (0.070 mA/cm2) and open circuit voltage of (0.55 V).

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0035839

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Investigation of structural and optoelectronic properties of annealed nickel phthalocyanine thin films</title>
<author>
<name sortKey="Neghabi, Mina" uniqKey="Neghabi M">Mina Neghabi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Faculty of Sciences, Najafabad Branch, Islamic Azad University</s1>
<s2>Isfahan</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Isfahan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zadsar, Mehdi" uniqKey="Zadsar M">Mehdi Zadsar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Faculty of Sciences, Najafabad Branch, Islamic Azad University</s1>
<s2>Isfahan</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Isfahan</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SEYED MOHAMMAD BAGHER GHORASHI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Faculty of Sciences, Najafabad Branch, Islamic Azad University</s1>
<s2>Isfahan</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Isfahan</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0035839</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0035839 INIST</idno>
<idno type="RBID">Pascal:14-0035839</idno>
<idno type="wicri:Area/Main/Corpus">000207</idno>
<idno type="wicri:Area/Main/Repository">000084</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1369-8001</idno>
<title level="j" type="abbreviated">Mater. sci. semicond. process.</title>
<title level="j" type="main">Materials science in semiconductor processing</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analytical method</term>
<term>Annealing</term>
<term>Annealing temperature</term>
<term>Cell structure</term>
<term>Cellular material</term>
<term>Crystallinity</term>
<term>Dark current</term>
<term>Doped materials</term>
<term>Energy gap</term>
<term>Grain size</term>
<term>Grain size analysis</term>
<term>Indium oxide</term>
<term>Metallophthalocyanine</term>
<term>Nickel complex</term>
<term>Optical characteristic</term>
<term>Optical properties</term>
<term>Optoelectronic properties</term>
<term>Organic semiconductors</term>
<term>Polymer blends</term>
<term>Root mean square value</term>
<term>Roughness</term>
<term>Schottky barrier</term>
<term>Schottky barrier diode</term>
<term>Smooth surface</term>
<term>Solar cell</term>
<term>Structural analysis</term>
<term>Styrenesulfonate polymer</term>
<term>Thin film</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
<term>Vacuum deposition</term>
<term>Voltage current curve</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété optoélectronique</term>
<term>Recuit</term>
<term>Dépôt sous vide</term>
<term>Température recuit</term>
<term>Caractéristique optique</term>
<term>Propriété optique</term>
<term>Méthode analytique</term>
<term>Analyse structurale</term>
<term>Grosseur grain</term>
<term>Granulométrie</term>
<term>Cristallinité</term>
<term>Surface lisse</term>
<term>Valeur efficace</term>
<term>Rugosité</term>
<term>Bande interdite</term>
<term>Diode barrière Schottky</term>
<term>Barrière Schottky</term>
<term>Cellule solaire</term>
<term>Addition étain</term>
<term>Courant obscurité</term>
<term>Caractéristique courant tension</term>
<term>Phtalocyanine métallique</term>
<term>Couche mince</term>
<term>Complexe de nickel</term>
<term>Structure cellulaire</term>
<term>Matériau cellulaire</term>
<term>Oxyde d'indium</term>
<term>Styrènesulfonate polymère</term>
<term>Thiophène dérivé polymère</term>
<term>Mélange polymère</term>
<term>Semiconducteur organique</term>
<term>Matériau dopé</term>
<term>7867</term>
<term>8530H</term>
<term>8460J</term>
<term>7363</term>
<term>ITO</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thin films of nickel phthalocyanine (NiPc) were prepared by thermal evaporation and the effects of annealing temperature on the structural and optical properties of the samples were studied using different analytical methods. Structural analysis showed that the grain size and crystallinity of NiPc films improved as annealing temperature increased from 25 to 150 °C. Also, maximum grain size (71.3 nm) was obtained at 150 °C annealing temperature. In addition, NiPc films annealed at 150 °C had a very smooth surface with an RMS roughness of 0.41 nm. Optical analysis indicated that band gap energy of films at different annealing temperatures varied in the range of 3.22-3.28 eV. Schottky diode solar cells with a structure of ITO/PEDOT:PSS/NiPc/Al were fabricated. Measurement of the dark current density-voltage (J-V) characteristics of diodes showed that the current density of films annealed at 150 °C for a given bias was greater than that of other films. Furthermore, the films revealed the highest rectification ratio (23.1) and lowest barrier height (0.84 eV) demonstrating, respectively, 23% and 11% increase compared with those of the deposited NiPc films. Meanwhile, photoconversion behavior of films annealed at 150 °C under illumination showed the highest short circuit current density (0.070 mA/cm
<sup>2</sup>
) and open circuit voltage of (0.55 V).</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1369-8001</s0>
</fA01>
<fA03 i2="1">
<s0>Mater. sci. semicond. process.</s0>
</fA03>
<fA05>
<s2>17</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Investigation of structural and optoelectronic properties of annealed nickel phthalocyanine thin films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>NEGHABI (Mina)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZADSAR (Mehdi)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SEYED MOHAMMAD BAGHER GHORASHI</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Faculty of Sciences, Najafabad Branch, Islamic Azad University</s1>
<s2>Isfahan</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>13-20</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2888A</s2>
<s5>354000500729180030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>36 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0035839</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Materials science in semiconductor processing</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Thin films of nickel phthalocyanine (NiPc) were prepared by thermal evaporation and the effects of annealing temperature on the structural and optical properties of the samples were studied using different analytical methods. Structural analysis showed that the grain size and crystallinity of NiPc films improved as annealing temperature increased from 25 to 150 °C. Also, maximum grain size (71.3 nm) was obtained at 150 °C annealing temperature. In addition, NiPc films annealed at 150 °C had a very smooth surface with an RMS roughness of 0.41 nm. Optical analysis indicated that band gap energy of films at different annealing temperatures varied in the range of 3.22-3.28 eV. Schottky diode solar cells with a structure of ITO/PEDOT:PSS/NiPc/Al were fabricated. Measurement of the dark current density-voltage (J-V) characteristics of diodes showed that the current density of films annealed at 150 °C for a given bias was greater than that of other films. Furthermore, the films revealed the highest rectification ratio (23.1) and lowest barrier height (0.84 eV) demonstrating, respectively, 23% and 11% increase compared with those of the deposited NiPc films. Meanwhile, photoconversion behavior of films annealed at 150 °C under illumination showed the highest short circuit current density (0.070 mA/cm
<sup>2</sup>
) and open circuit voltage of (0.55 V).</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D11C02A</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A40E</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H67</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03F03</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>240</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Propriété optoélectronique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Optoelectronic properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Propiedad optoelectrónica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="GER">
<s0>Gluehen</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dépôt sous vide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Vacuum deposition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="GER">
<s0>Vakuumbeschichtungsverfahren</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Depósito bajo vacío</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Température recuit</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Annealing temperature</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="GER">
<s0>Gluehtemperatur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Temperatura recocido</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Caractéristique optique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Optical characteristic</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Característica óptica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Propriété optique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Optical properties</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="GER">
<s0>Optische Eigenschaft</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Propiedad óptica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Méthode analytique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Analytical method</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Método analítico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Analyse structurale</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Structural analysis</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Análisis estructural</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Grosseur grain</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Grain size</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="GER">
<s0>Korngroesse</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Grosor grano</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Granulométrie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Grain size analysis</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="GER">
<s0>Teilchengroessenbestimmung</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Granulometría</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Cristallinité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Crystallinity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Cristalinidad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Surface lisse</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Smooth surface</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Superficie lisa</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Valeur efficace</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Root mean square value</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Valor eficaz</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Rugosité</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Roughness</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="GER">
<s0>Rauhigkeit</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Rugosidad</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Bande interdite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Energy gap</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="GER">
<s0>Energieluecke</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Banda prohibida</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Diode barrière Schottky</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Schottky barrier diode</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Diodo barrera Schottky</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Barrière Schottky</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Schottky barrier</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Barrera Schottky</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="GER">
<s0>Zinnzusatz</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Courant obscurité</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Dark current</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Corriente obscuridad</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Voltage current curve</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Característica corriente tensión</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Phtalocyanine métallique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Metallophthalocyanine</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Ftalocianina metálica</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="GER">
<s0>Duennschicht</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Complexe de nickel</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Nickel complex</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="GER">
<s0>Nickelkomplex</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Níquel complejo</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Structure cellulaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Cell structure</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="GER">
<s0>Zellengefuege</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Estructura celular</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Matériau cellulaire</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Cellular material</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Material celular</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="GER">
<s0>Indiumoxid</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Styrènesulfonate polymère</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Styrenesulfonate polymer</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Estireno sulfonato polímero</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Mélange polymère</s0>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Polymer blends</s0>
<s5>30</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>Semiconducteur organique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="3" l="ENG">
<s0>Organic semiconductors</s0>
<s5>31</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="32" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>8530H</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>7363</s0>
<s4>INC</s4>
<s5>59</s5>
</fC03>
<fC03 i1="37" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>041</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000084 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000084 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0035839
   |texte=   Investigation of structural and optoelectronic properties of annealed nickel phthalocyanine thin films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024